
Building Security In
Editor: Gary McGraw, gem@cigital.com

aims to provide that help by explor-
ing software security best practices.

The software security field is a rel-
atively new one. The first books and
academic classes on the topic appeared
in 2001, demonstrating how recently
developers, architects, and computer
scientists have started systematically
studying how to build secure software.
The field’s recent appearance is one
reason why best practices are neither
widely adopted nor obvious.

A central and critical aspect of the
computer security problem is a soft-
ware problem. Software defects with
security ramifications—including
implementation bugs such as buffer
overflows and design flaws such as
inconsistent error handling—
promise to be with us for years. All
too often, malicious intruders can
hack into systems by exploiting soft-
ware defects.1 Internet-enabled soft-
ware applications present the most
common security risk encountered
today, with software’s ever-expand-
ing complexity and extensibility
adding further fuel to the fire. By any
measure, security holes in software
are common, and the problem is
growing: CERT Coordination
Center identified 4,129 reported
vulnerabilities in 2003 (a 70 percent
increase over 2002, and an almost
fourfold increase since 2001).2,3

Software security best practices

leverage good software engineering
practice and involve thinking about
security early in the software life
cycle, knowing and understanding
common threats (including lan-
guage-based flaws and pitfalls), de-
signing for security, and subjecting all
software artifacts to thorough objec-
tive risk analyses and testing. Let’s
look at how software security fits into
the overall concept of operational se-
curity and examine some best prac-
tices for building security in.

...versus application
security
Application security means many dif-
ferent things to many different peo-
ple. In IEEE Security & Privacy maga-
zine, it has come to mean the
protection of software after it’s already
built. Although the notion of protect-
ing software is an important one, it’s
just plain easier to protect something
that is defect-free than something rid-
dled with vulnerabilities.

Pondering the question, “What is
the most effective way to protect soft-
ware?” can help untangle software
security and application security. On
one hand, software security is about
building secure software: designing
software to be secure, making sure
that software is secure, and educating
software developers, architects, and
users about how to build secure

things. On the other hand, applica-
tion security is about protecting soft-
ware and the systems that software
runs in a post facto way, after devel-
opment is complete. Issues critical to
this subfield include sandboxing code
(as the Java virtual machine does),
protecting against malicious code,
obfuscating code, locking down exe-
cutables, monitoring programs as
they run (especially their input), en-
forcing the software use policy with
technology, and dealing with exten-
sible systems.

Application security follows nat-
urally from a network-centric ap-
proach to security, by embracing
standard approaches such as pene-
trate and patch4 and input filtering
(trying to block malicious input) and
by providing value in a reactive way.
Put succinctly, application security is
based primarily on finding and fix-
ing known security problems after
they’ve been exploited in fielded sys-
tems. Software security—the pro-
cess of designing, building, and test-
ing software for security—identifies
and expunges problems in the soft-
ware itself. In this way, software secu-
rity practitioners attempt to build
software that can withstand attack
proactively. Let me give you a spe-
cific example: although there is some
real value in stopping buffer overflow
attacks by observing HTTP traffic as
it arrives over port 80, a superior ap-
proach is to fix the broken code and
avoid the buffer overflow com-
pletely.

...as practiced by
operations people
One reason that application security
technologies such as firewalls have
evolved the way they have is because

GARY

MCGRAW

Cigital

S
oftware security is the idea of engineering software

so that it continues to function correctly under

malicious attack. Most technologists acknowledge

this undertaking’s importance, but they need some

help in understanding how to tackle it. This new department

Software Security

80 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

operations people dreamed them up.
In most corporations and large orga-
nizations, security is the domain of the
infrastructure people who set up and
maintain firewalls, intrusion detection
systems, and antivirus engines (all of
which are reactive technologies).

However, these people are opera-
tors, not builders. Given the fact that
they don’t build the software they
have to operate, it’s no surprise that
their approach is to move standard
security techniques “down” to the
desktop and application levels. The
gist of the idea is to protect vulnera-
ble things (in this case, software)
from attack, but the problem is that
vulnerabilities in the software let ma-
licious hackers skirt standard security
technologies with impunity. If this
were not the case, then the security
vulnerability problem would not be
expanding the way that it is. Clearly,
this emphasizes the need to get
builders to do a better job on the
software in the first place.

Protecting a network full of

evolving software is difficult (even if
the software is not patched every five
minutes). If software were in some
sense self-protecting (by being de-
signed defensively and more prop-
erly tested from a security perspec-
tive) or at least less riddled with
vulnerabilities, running a secure net-
work could become easier and more
cost effective.

In the short run, we clearly—
desperately—must make progress on
both fronts. But in the long run, we
must figure out ways to build easier-
to-defend code. Software security is
about helping builders do a better
job so that operators end up with an
easier job.

...in the software
development
life cycle
On the road to making such a funda-
mental change, we must first agree
that software security is not security
software. This is a subtle point often
lost on development people who

tend to focus on functionality. Obvi-
ously, there are security functions in
the world, and most modern soft-
ware includes security features, but
adding features such as SSL (for
cryptographically protecting com-
munications) does not present a
complete solution to the security
problem. Software security is a sys-
tem-wide issue that takes into ac-
count both security mechanisms
(such as access control) and design
for security (such as robust design
that makes software attacks difficult).
Sometimes these overlap, but often
they don’t.

Put another way, security is an
emergent property of a software sys-
tem. A security problem is more
likely to arise because of a problem in
a standard-issue part of the system
(say, the interface to the database
module) than in some given security
feature. This is an important reason
why software security must be part
of a full lifecycle approach. Just as
you can’t test quality into a piece of

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 81

This department is about building systems that include properly

constructed software. Past issues of this magazine have called

attention to the serious problems software practitioners face when it

comes to security. Most security researchers agree that we have a

pressing problem. In “A Call to Arms: Look Beyond the Horizon,”1

Jeannette Wing includes “software design and security” as one of

three critical areas to tackle if security research is to make progress. In

“From the Ground Up: The DIMACS Software Security Workshop,”2 I

introduce the software security problem, discuss trends that demon-

strate the problem’s growth, and introduce the philosophy of proac-

tively attacking the problem at the architectural level.

The good news is that technologists and commercial vendors

all acknowledge that the software security problem exists. The bad

news is that we have barely begun to instantiate solutions, and

many proposed solutions are impotent. Not surprisingly, early

commercial solutions to the software security problem tend to take

an operational stance—that is, they focus on solving the software

security problem through late lifecycle activities such as firewalling

(at the application level), penetration testing, and patch man-

agement. Because security has tended to be operational in nature

(especially in the corporate world where IT security revolves

around the proper placement and monitoring of network security

apparatus), this operational tack is only natural. This leads to a

bifurcation of approaches when it comes to software, into appli-

cation security and software security.3

The core of the problem is that building systems to be secure

cannot be accomplished by using an operations mindset. Instead,

we must revisit all phases of system development and make sure

that security engineering is present in each of them. When it comes

to software, this means understanding: requirements, architecture,

design, coding, testing, validation, measurement, and main-

tenance. This is a far cry from code review and black-box testing!

Essentially, this department is about security best practices from

all phases of the software life cycle. My plan is to coauthor a set of

articles with software security practitioners about software security

best practices from the real world. You are welcome and

encouraged to help!

References

1. J. Wing, “A Call to Action: Look Beyond the Horizon,” IEEE Security & Pri-

vacy, vol. 1, no. 6, 2003, pp. 62–67.

2. G. McGraw, “From the Ground Up: The DIMACS Software Security Work-

shop,” IEEE Security & Privacy, vol. 1, no. 2, 2003, pp. 59–66.

3. G. McGraw, “Building Secure Software: Better than Protecting Bad Soft-

ware (Point/Counterpoint with Greg Hoglund),” IEEE Software, vol. 19, no.

6, 2002, pp. 57–59.

Introducing Building Security In

Building Security In

software, you can’t spray paint secu-
rity features onto a design and expect
it to become secure. There’s no such
thing as a magic crypto fairy dust—
we need to focus on software secu-
rity from the ground up.

As practitioners become aware of
software security’s importance, they
are increasingly adopting and evolv-
ing a set of best practices to address
the problem. Microsoft has carried
out a noteworthy effort under the
rubric of its Trustworthy Comput-
ing Initiative.5,6 Most approaches in
practice today encompass training
for developers, testers, and archi-
tects, analysis and auditing of soft-
ware artifacts, and security engineer-
ing. In the fight for better software,
treating the disease itself (poorly de-
signed and implemented software) is
better than taking an aspirin to stop
the symptoms. There’s no substitute
for working software security as
deeply into the development process
as possible and taking advantage of
the engineering lessons software
practitioners have learned over the
years.

Figure 1 specifies one set of best
practices and shows how software
practitioners can apply them to the
various software artifacts produced
during software development. In the
rest of this section, I’ll touch on best
practices. As this department un-
folds, we’ll cover each of these areas
in much greater detail.

Security should be explicitly at
the requirements level. Security re-
quirements must cover both overt
functional security (say, the use of
applied cryptography) and emergent
characteristics. One great way to
cover the emergent security space is
to build abuse cases. Similar to use
cases, abuse cases describe the sys-
tem’s behavior under attack; build-
ing them requires explicit coverage
of what should be protected, from
whom, and for how long.

At the design and architecture
level, a system must be coherent and
present a unified security architec-
ture that takes into account security
principles (such as the principle of
least privilege). Designers, architects,
and analysts must clearly document
assumptions and identify possible at-
tacks. At both the specifications-
based architecture stage and at the
class-hierarchy design stage, risk
analysis is a necessity—security ana-
lysts should uncover and rank risks so
that mitigation can begin. Disre-
garding risk analysis at this level will
lead to costly problems down the
road. External review (outside the de-
sign team) is often necessary.

At the code level, we should
focus on implementation flaws, es-
pecially those that static analysis
tools—tools that scan source code for
common vulnerabilities—can dis-
cover. Several vendors now address
this space, and tools should see mar-

ket-driven improvement and rapid
maturity later this year. As stated
earlier, code review is a necessary,
but not sufficient, practice for
achieving secure software. Security
bugs (especially in C and C++) can
be deadly, but architectural flaws are
just as big a problem.

Security testing must encompass
two strategies: testing security func-
tionality with standard functional
testing techniques, and risk-based se-
curity testing based on attack patterns
and threat models. A good security
test plan (with traceability back to re-
quirements) uses both strategies. Se-
curity problems aren’t always appar-
ent, even when we probe a system
directly, so standard-issue quality as-
surance is unlikely to uncover all the
pressing security issues.

Penetration testing is also useful,
especially if an architectural risk
analysis is specifically driving the
tests. The advantage of penetration
testing is that it gives a good under-
standing of fielded software in its
real environment. However, any
black-box penetration testing that
doesn’t take the software architec-
ture into account probably won’t
uncover anything deeply interesting
about software risk. Software that
falls prey to canned black-box test-
ing—which simplistic application
security testing tools on the market
today practice—is truly bad. This
means that passing a cursory pene-
tration test reveals very little about
your real security posture, but fail-
ing an easy canned penetration test
tells you that you’re in very deep
trouble indeed.

Operations people should care-
fully monitor fielded systems dur-
ing use for security breaks. Simply
put, attacks will happen, regardless
of the strength of design and imple-
mentation, so monitoring software
behavior is an excellent defensive
technique. Knowledge gained by
understanding attacks and exploits
should be cycled back into the de-
velopment organization, and secu-
rity practitioners should explicitly

82 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2004

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. Software security best practices applied to various software artifacts.
Although the artifacts are laid out according to a traditional waterfall model in this
illustration, most organizations follow an iterative approach today, which means that
best practices will be cycled through more than once as the software evolves.

Building Security In

track both threat models and attack
patterns.

Note that risks crop up during all
stages of the software life cycle, so a
constant risk analysis thread, with re-
curring risk tracking and monitoring
activities, is highly recommended.

...as a
multidisciplinary
effort
By and large, software architects, de-
velopers, and testers remain blithely
unaware of the software security
problem. One essential form of best
practices involves training software
development staff on critical software
security issues. The most effective
form of training begins with a de-
scription of the problem and demon-
strates its impact and importance. Be-
yond awareness, more advanced
software security training should
offer coverage of security engineer-
ing, design principles and guidelines,
implementation risks, design flaws,
analysis techniques, software ex-
ploits, and security testing. Each best
practice called out earlier is a good
candidate for in-depth training.

Software security can and should
borrow from other disciplines in
computer science and software engi-
neering when developing and
evolving best practices. Of particular
relevance are

• security requirements engineering,
• design for security, software archi-

tecture, and architectural analysis,
• security analysis, security testing,

and use of the Common Criteria,
• guiding principles for software se-

curity and case studies in design
and analysis,

• auditing software for implementa-
tion risks, architectural risks, auto-
mated tools, and technology
developments (code scanning,
information flow and so on), and

• common implementation risks
(buffer overflows, race conditions,
randomness, authentication sys-
tems, access control, applied cryp-
tography, and trust management).

Much work remains to be done
in each of the best practice areas, but
some basic practical solutions should
be adapted from areas of more ma-
ture research.

T his department’s goal is to cover
many of the best practices

sketched out here in much greater
detail. You can do two things to help:
send feedback to me regarding
which best practices you want to see
covered first, and volunteer to help
develop an article on any individual
best practice outlined here. With
your help, we can create a decent un-
derstanding of software security best
practices that can be practically ap-
plied and make a big impact on the
software security problem.

As the trinity of trouble—con-
nectedness, complexity, and extensi-
bility—continues to impact software
security in a negative way, we must
begin to grapple with the problem in
a more reasonable fashion. Integrat-
ing a decent set of best practices into
the software development life cycle
is an excellent way to do this. Al-
though software security as a field
has much maturing to do, it has
much to offer to those practitioners
interested in striking at the heart of
security problems.

References
1. G. Hoglund and G. McGraw,

Exploiting Software: How to Break
Code, Addison-Wesley, 2004.

2. J. Viega and G. McGraw, Building
Secure Software, Addison-Wesley,
2001; www.buildingsecure
software.com.

3. G. McGraw, “From the Ground
Up: The DIMACS Software
Security Workshop,” IEEE Secu-
rity & Privacy, vol. 1, no. 2, 2003,
pp. 59–66.

4. G. McGraw, “Testing for Security
During Development: Why We
Should Scrap Penetrate-and-
Patch,” IEEE Aerospace and Elec-
tronic Systems, vol. 13, no. 4, 1998,
pp. 13–15.

5. L. Walsh, “Trustworthy Yet?” Infor-
mation Security Magazine, Feb. 2003;
http://infosecuritymag.techtarget.
com/2003/feb/cover.shtml.

6. M. Howard and S. Lipner, “Inside
the Windows Security Push,”
IEEE Security & Privacy, vol. 1, no.
1, 2003, pp. 57–61.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. He serves on the technical advi-
sory boards of Counterpane, Fortify, and
Indigo. He also is coauthor of Exploiting
Software (Addison-Wesley, 2004), Build-
ing Secure Software (Addison-Wesley,
2001), Java Security (John Wiley & Sons,
1996), and four other books. Contact
him at gem@cigital.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 83

Ensure that your networks operate
safely and provide critical services even in

the face of attacks. Develop lasting security
solutions, with this peer-reviewed publication.

Top security professionals in the field share
information you can rely on:

• Wireless Security
• Securing the Enterprise
• Designing for Security

Infrastructure Security
• Privacy Issues
• Legal Issues
• Cybercrime
• Digital Rights Management and more!

www.computer.org/security/

BE SECURE.

DON’T
RUN

THE RISK.
BE SECURE.

DON’T
RUN

THE RISK.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

